Formal Analysis of a SpaceCraft Controller using SPIN

KlausHavelund Mike Lowry andJohnPenix

NASA AmesResearclCenter

Moffett Field, California,USA
Email: {havelund,lavry,jpenix} @ptolemyarc.nasa.go
URL.: http://ic-www.arc.nasa.gdic/projects/amphion

Abstract

This paperdocumentsn applicationof the finite state
model cheder SPIN to formally verify a multi-threaded
plan executionprogramminglanguage. The plan execu-
tion languageis onecomponendf NASAs New Millennium
RemoteAgent, an artificial intelligencebasedspacecaft
contol systemarchitecture that is scheduledto laund in
Octoberof 1998 as part of the DEEP SPACE 1 missionto
Mars. Thelanguage is concetelynamedEsL (Executive
SupportLanguage) and is basically a language designed
to supportthe constructionof reactivecontol medianisms
for autonomousobotsandspacecrafts. It offers advanced
contmol constructsfor manaying interacting parallel goal-
and-eventdriven processesand is currently implemented
asanextensiorto a multi-threadedCommON L1sp. Atotal
of 5 errors were in fact identified,4 of which were impor-
tant. Thisis regardedasa verysuccessfulesult. Accoding
to theRemoteAgentprogrammingteamtheeffort hashada
majorimpact,locatingerrors thatwould probablynot have
beenlocatedotherwiseandidentifyinga major designflaw.
Thework additionally motivatedthe introductionof proce-
dural abstractionin termsof inline proceduesin SpIN.

1 Intr oduction

SPIN [7] is averificationsystemthatsupportghe design
and verification of finite stateasynchronouprocesssys-
tems. Programsareformulatedin the PROMELA program-
ming languagewhich is quite similar to an ordinary pro-
gramminglanguage,except for certain non-deterministic
specificationorientedconstructs. Processesommunicate
eithervia sharedvariablesor via messag@assingthrough
buffered channels. Propertiesto be verified are statedin
thelineartemporallogic LTL. The SPIN modelchedker can

automaticallydeterminavhetheraprogramsatisfiesaprop-
erty, andin casethepropertydoesnothold, anerrortraceis
generated.

This paperdocumentanapplicationof SpiN to formally
verify a multi-threadedplan executionprogramminglan-
guage(a library really). The plan executionlanguageis
onecomponenbf NASA's New Millennium RemoteAgent
(RA) [9], anartificial intelligencebasedspacecraftontrol
systemarchitecturehatis scheduledo launchin October
of 1998 as part of the DEEP SPACE 1 missionto Mars.
The languageis concretelynamedEsL (Executve Sup-
portLanguagepndis basicallyalanguagealesignedo sup-
porttheconstructiorof reactize controlmechanism$or au-
tonomousobotsandspacecrafts. It offersadvancedcontrol
constructdor managingnteractingparallelgoal-and-gent
drivenprocessesandis currentlyimplementedisanexten-
sionto amulti-threadedCOMMON L 1SP.

EsL is usedto programthe RA Executive a sub-
componenbf the RA, responsibldor executingjobssafely
onboard.To analyzealanguagelike EsL, whichis generic
in its nature,we have setup a specialsituationcalledthe
model-reallya smallexampleRA Executve—with afixed
numberof tasksall using constructsof the language and
thenobsened whetherthis modelsatisfiesvariousdesired
propertiesTheeffort hasconsistedf handtranslatingparts
of the Lisp codefor EsL into the PROMELA languageof
SPIN. A total of 5 errorshave in factbeenidentified,4 of
which areimportant. This is regardedasa very successful
result. Accordingto the RA programmingteamthe effort
hashada majorimpact,locating errorsthat would proba-
bly nothave beenlocatedotherwiseandidentifyingamajor
designflaw not yet resoled at the time of writing our first
report[4].

Section2 containsan informal descriptionof the RA
Executve, while section3 describests formalizationin
PROMELA. Section4 presentghe verificationresultsby
first statingthe propertiesto be verified, and then by de-

scribingthe errorsfound by applyingthe modelcheclerto

the modelandtheseproperties.Eacherroris describedy
anerrortraceleadingfrom theinitial systemstateto a state
that breaksthe particularpropertybeingverified. Finally,

sectionss and6 containthe RA programmingeams eval-

uationof theproject,andour own conclusionsespectiely.

Our own conclusionsconcernissuessuchas PROMELA'S
capabilitiesseenas a specificationnotation,andtool sup-
portfor modelbuilding.

Acknowledgments

We would like to thank ErannGat, who hasprogrammed
EsL, for his usefulresponseso our error reports,andfor
providing the basiccontentsof the evaluationin section5.
Whenwe occasionallyreferto the RAprogrammingteanis
responseo our work, it is his responsehatis referredto.
We alsowantto thankRonKeesingandBarney Pellwhoare
membersof the RA programmingteam. Their comments
weremorerelatedto explainingthe modelandsuggesting
propertiesto be verified. Finally, we have had an ongo-
ing usefulemail corversatiorwith SpiN’s designerGerard
Holzmann. A resultof this communicationwvasthe intro-
ductionof “inline” proceduresn PROMELA.

2 Informal Description of the RA Executive

In this section,we give an informal descriptionof the
RA Executive. After anoverview follows a descriptionof
thedatatypesandthe processesf thesystem.

2.1 Overview

The RA Executive,Figurel, is designedo supportsafe
executionof software controlledtaskson boardthe space
craft. A taskmayfor examplebeto runandsuney acam-
era.A taskoftenrequiresspecificpropertiesto holdin order
to executecorrectly For example,the camera—sumying
taskmayrequirethecamerdgo beturnedonthroughoutask
execution.Whenataskis started dynamically),it first tries
to achievethepropertienwhichit dependswhereafterit
startsperformingits mainfunction. The camera—sumying
taskwill for exampletry to turn on the camerabeforerun-
ningthecameraPropertiesnay, however, beunexpectedly
broken(e.g.cameranaybeturnedoff) andtasksdepending
onsuchbrokenpropertiesnustthenbeinterrupted

To simplify the programmingof the individual tasks,
the RA Executve modelsthe spacecraftlevicesin terms
of the various propertiesthat they may have, and stores
thesein a database The executive provides mechanisms
for both achieving and maintainingtheseproperties,and

Spacecraft

Achieve
Property \Monitors

Control

Property Locks
O/‘\ Al 10

B ON
T« [C| O

Subscribe

Database
Lock
Event
Z | OFF
. Ak
: Interrupt

Update
Q v/fvent

Maintain Properties
Daemon

Figure 1. Remote Agent Executive

useslocksto preventtaskswith incompatiblepropertyre-
guestgrom executingconcurrently Executingconcurrently
with thetasksis a“maintain properties”daemorthatmon-
itors the databaseepresentinghe stateof the spacecratft.
If thereis an inconsistencypetweenthe databasendthe
locks— meaningthata locked propertyno longerholdsin
thedatabase the daemorsuspendsll taskssubscribedo
the propertywhile someactionis taken to re-achiee the
property The daemonis normally inactive unlesscertain
eventshappensuchasa changeof the databaser thelock
table.

The Executive permitsvariousachievemethoddgo beas-
sociatedwith a property Then,whena taskmakesa re-
guestfor a propertyto be achieved, the Executve callsthe
achieve methodthatis appropriatefor the currentstateof
the system. This aspectwill, however, not be subjectedo
verification,and hencewe shall downplayit. Instead,we
shallregardthetasksasbeingableto achieve propertiedi-
rectlythemseles.

2.2 DataTypes

The Properties

A propertydescribesomestateof the spacecraft. In terms
of programmingargon, it basicallystatesthat somevari-
able,calledthe propertyname hassomevalue,calledthe
propertyvalue For example thefollowing is aproperty:

CAMERA is ON

It statesthatthe propertynameCAMERA hasthe property
value ON. Hence,a propertyp is a pairing of a property
namepn anda propertyvaluepv: p = (pn,pv). Theprop-
erty above canbewritten as(CAMERA,ON).

The Database

The stateof the spacecraft is constantlymonitored,and
storedin adatabaseSincethe currentstatecanberegarded
asthe setof propertiesthat currentlyhold, the databasés

basicallya setof suchproperties.

The Property Lock Table

As mentioned a taskcanlock a propertyto prevent other
tasksrequiringincompatiblgoropertiefrom executingcon-
currently Two propertiesp; = (pn,pvi) and p» =
(pn, pva) are incompatible,if they have the sameprop-
erty name(pn) but differentpropertyvalues(pv; # pvs).
The propertylock tablecontainsthosepropertieghat have
beenlocked. In addition,it containsinformationfor each
propertyaboutwhich taskssubscribeto it (rely onit) and
whetherit hasbeenachiezed or not. Thatis, the property
lock tablecanberegardedasa setof locks,wherealock is
atriple of theform: (p, subscribers, achieved)!.

If thereis an inconsisteng betweenthe databaseand
thelocks, the daemorsuspendsill taskssubscribedo the
property An inconsisteng occursif thelock tablecontains
alock ! = (p,sub,true) with a propertyp thathasbeen
achieved(achievedfield is true) butis notin thedatabase.

The Events

Whenever the lock tableor the databasés changedthisis
signaledto the daemonsothatit canexaminethe renaved
systemstate. In general,applicationtasksmay also wait
for sucheventsto happerasdescribeelow. For this pur-
pose,event lists are introduced,one for eachinstanceof
event: SNARF_EVENT (representinga changeof the lock
table — to snarf is implementergargon for to lock) and

MEMORY_EVENT (representinga changeof the database).

Any procesgtaskor daemon)vantingto wait for an event
to happencalls a wait procedurewhich hooksup the pro-

cessto the correspondindist. Whene&er changeshappen
to thesedatastructuresthe correspondingvent lists are
signaled via the signal procedureresultingin the waiting

processebeingrestarted for examplethedaemon.

2.3 Processes

The Tasks

Beforeataskexecutedts mainjob, it will try to achiezethe
propertieghatthe executiondepend®n. First, however, it
will lock the propertiesin the lock table— this actiity is

IThefigureonly shaws the propertiesof thelock table.

calledsnarfingby implementersThe snarfingof a property
can,however, only succeedf it is compatiblewith the ex-

istinglocks,andin caseit’s not, thetaskis abortedIf there
arenot conflictinglocks, the taskwill createthelock, if it

is not alreadythere. Note that someothertask may have
locked the exact samepropertyalready andthis is not de-
fined asa conflict. If it succeedsthe taskalso putsitself
into the subscriberdist of thelock, indicatingthatnow this
taskdepend®n this property

The creatorof a lock is calledthe owner, in contrastto
tasksthat subscribdaterto the sameproperty The owner
is responsibldfor achieving the property resultingin the
databas®eingupdated.Uponsuccessfuachiezementthe
achievedfield in thelock is setto true. If theachierement
fails, the taskis aborted. Othertasksthat subscribdater
thanthe ownermustwait for the ownerto achieve theprop-
erty. Thisis doneby simplywaitingfor aMEMORY_EVENT
which successfullyachievesthe property Hence,the wait
proceduretakes a propertyas argumentin additionto the
eventto bewaitedfor.

Oncea task hasfirst snarfedand thenachieved its re-
quired properties,it executesits main job, relying on the
propertiedo be maintainedhroughoujob execution.

Beforeataskterminatesit releasests locks. Thatis, it
removesitself from thesubscriberéist, andin casehisthen
becomeempty(no othersubscribers)it removesthe lock
completely In casethere are other subscribersthe lock
mustof coursebe maintained.

The “Maintain Properties” Daemon

The purposeof this daemonis to guaranteehat achieved
propertiesare maintainedwhile subscribingtasksare exe-
cuting. A onceachiered propertyin the propertylock ta-
ble is saidto be maintainedas long asit is containedin
the databasgand henceis a propertyof the spacecraft).
Hence from the perspeciie of atask,the maintainedorop-
ertiesare invariantswhile the taskis executing— andthe
taskis abortedby thedaemornif not.

Thedaemoris normallyin “sleeping”mode waiting for
an eventthat modifiesthe databas€dM EMORY_EVENT) or
the propertylock table (SNARF_LEVENT). This is imple-
mentedby letting the daemonwait in the corresponding
eventlists. Oncestarted,t examinesall locksin the prop-
erty lock table,andfor eachlock wherethe achievedfield
is true, it checkswhetherthe propertyis containedn the
database.If the propertyis not in the databasall tasks
in thelock’s subscriberdist areinterruptedandarecover-
ing procedures initiated which will re-achi@e the prop-
erty. After having examinedall locks, the daemongoes
into sleepagainby waiting for anotherMEMORY_EVENT
or SNARF_EVENT.

3 Formalization in PROMELA

In this sectionwe presentthe PROMELA modelof the
RA Executive. The basicdatatype of L1sp is that of lists,
andwe thereforebegin our expositionby outlining how we
have modeledlists in PROMELA. Thenthe presentations
dividedinto subsectionsorrespondingp thefollowing top-
ics: the statespace(constantstypesandglobalvariables),
the operationson events,the tasks,the daemon the envi-
ronmenthatmayintroduceviolations,andfinally asection
explaininghow the systemstateis initialized.

The L1sp programthatwe wantto modelin PROMELA
is highly structuredusingprocedurahbstractionandhence
is divided into a collectionof relatively small-sizedproce-
duresand functions. We have tried to maintainthe same
level of structuring,using PROMELA’S inline and macro
concept.Notefurthermorethatall communicatiorbetween
processedasicallytakesplacevia shaed variables since
this is how the Lisp implementationvorks. Channelsare
usedto representists though,aswill be describedn the
next section.

3.1 Modeling Lists

The fundamentatatatypein LisP is thatof lists. Lists
areusedheaily in theprogramandhencewe have tried to
find acorvenientway to representhemin PROMELA. One
solutionisto defineanabstractiatatype,implementindists
asarraysanddefiningthe classicaloperationdike add an
elementremore an elementetc. asmacros(or inlinesin
thenewestversionof SPIN). We didn’t do this, mainly due
to anearly attemptto avoid macrossincethey arenot well
integratedinto SPIN; they do for examplenot supportlocal
variablesverywell.

As anexperiment(ratherthana choiceof bestsolution)
we decidedearlyto modellists aschannelsChannelhave
someof the samepropertiesas lists: one can easily add
elementsandremove them (following the FIFO—principle
though). In addition,channelamake someoperationghat
we needeasy Thatis, questiondike “does list [contain
elementz?”, andoperationdike “r emove elementz from
thelist/ —nomatterwheerit isin thelist” . We shallshortly
describehetechnique.

First, with the macro definition “#define |i st
chan” wedefineanew symboll i st to standfor thesym-
bol chan, which is the PROMELA keyword for declaring
channelsThis definitionmalkesit possibleto declarea “list
variable”asfollows:

list nunbers = [5] of {int}

The“list variable”’nunber s is intendedo containlists
with alengthsmallerthanor equalto 5. A numberof oper
ationsarenow defineduponlists, which we shallonly give
thesignaturedor, seeFigure?2.

inline append(e, |
inline remove(e, |
inline copy(l1,12
inline next(l,x)

) {.
) {.
) .

{..

e e e

Figure 2. Signatures for list operations

Informally, the proceduresand functions do the
following?. The procedureappend appendsan element
to thefront of alist; r enove removesa particularelement
(assumingt is there);copy copiesonelist (I 1) into an-
other(l 2); next removesthefirst elementnsertedFIFO
principle)andstoresthisin theresultvariablex (assuming
thelist is not empty). Supposeve have thefollowing dec-
larations:

int x;
list nunbers = [5] of {int};
list tenp = [5] of {int};

ThenFigure 3 illustratesthe useof the list operations,
and their effect on the variablesx, nunber s andt enp
(only changesare shawvn). All statementsxecute,hence
booleanvaluedexpressiongvaluateto true.

X nunbers tenp

append(1, nunbers);
append(2, nunbers) ; [2,
append(3, nunbers) ; [3,2,1]

next (nunbers, x) 1
X == 1’

copy(nunbers, tenp);
remove(3, tenp); [2]
next (tenp, x); 2 [1
X == 2

Figure 3. Examples of list operations

2Somavhatmoreformally, the procedureperformthefollowing chan-
nel operations:append(e, |) doesl ! e; renmove(e, |) doesl ??e;
copy(11,1 2) doescombination®fl 1?x andl 2! x; andnext (1, x)
doesl ?x. Notehowever, thatsomeof thesePROMELA channebperators
do notallow variablesasagumentspnly constantshencetheimplemen-
tationsof theseproceduresresometimesnoreelaborated.

3.2 The State Space

Threeconstantslefinethe boundsof the system Figure
4. Thatis, they definethesizeof the statespaceanimpor-
tantfactorfor obtainingefficient modelchecking.

#define NO_ PROPS 2
#define NO_EVENTS 2
#define NO TASKS 3

Figure 4. The constants

The constaniNO_PROPS defineshe numberof property
names,and hencethe size of the propertylock table and
databaseyhich eachhave anentryfor eachpropertyname.
We shallwork with two propertynames0 and1. Thecon-
stantNO_EVENTS definesthe numberof events,2 in our
case:MEMORY_EVENT and SNARF_EVENT aswill be for-
malizedbelow. Finally, theconstantNO TASKS defineshe
numberof tasksin the system,jncludingthe daemon.This
numberis setto 3 correspondingo a daemorandtwo ap-
plicationtasks.

A numberof typesaredefined,seeFigure53. Thetype
Event | d is anenumeratedype definingthe two forms of
events. Taskl d is the type of taskidentifiers. Note, that
thereare 3 tasks(NO_TASKS = 3): the daemonwhich is
givenidentity 0 andtwo applicationtasks,givenidentity 1
and2 respectiely.

The type Property_Nane contains the property
namesof which therearetwo (NO_PROPS = 2): 0 and1.
CorrespondinglythetypePr oper t y _Val ue containghe
propertyvalues. Thereis no constantdefining the max-
imal numberof property values, since this boundis not
neededfor declaringthe statespace(beyond declaringit
asa byte). Finally, a Property is thendefinedasa
recordcontainingtwo entries:a propertynameanda prop-
ertyvalue.

Now, as we shall see,the propertylock table will be
modeledasa mappingfrom propertynamedo locksin the
type Lock*. Henceeachproperty nameis mappedto a
recordcontainingthe following threefields: the property
valueit is supposedo have; thelist of taskssubscribingo
the lock; andfinally, a flag indicatingwhetherit hasbeen
achievedor not.

3Note that PROMELA does not have type equationsnor enumer
atedtypes. Hence,a type equationof the formtype T = ty stands
for #define T ty andan enumeratedype of the form type T =
{A, B, C} standsfor #define T byt e, followedby #define A O,
#define B 1 and#define C 2.

4In the L1sp programa propertylock tableis representedsallist, but
we have found the mappingrepresentatioto be more corvenientfrom a
modelingpoint of view; althoughtherebywe risk to overlook potential
errors.

type
Eventld = {MEMORY_EVENT, SNARF_EVENT};
Taskl d = byte;

type
Property_Nane = byte;
Property_Val ue = byte;

typedef Property{
Property_Name nane,
Property_Val ue val ue};

typedef Lock{
Property_Val ue val ue;
list sub = [NO_TASKS] of {Taskld};
bool achi eved};

typedef Event{
byte count;
list pending_tasks = [NO_TASKS] of {Taskld}};

typedef Task{
State state;
list waiting_for = [NO_EVENTS] of {Eventld};
Property prop};

type
State = {SUSPENDED, RUNNI NG,
ABORTED, TERM NATED};

Figure 5. Types

Each event (VEMORY_EVENT and SNARF_EVENT) is
associateavith a statusrecordof thetype Event contain-
ing two fields: a counterthat is increasedeachtime the
eventis signaledusedby thedaemon)andalist of pending
taskswaiting for the eventto signaled andwhich thenwill
bere-startedCorrespondinglyeachtaskis associateavith
a statusrecordof the type Task containingthe following
threefields: the stateof the task(SUSPENDED, RUNNI NG,
ABORTED, or TERM NATED); alist of thoseeventsit waits
for in casethe stateis SUSPENDED; andfinally a property
calledpr op. This lastpropertyrepresenta conditionthat
hasto besatisfiecheforethetaskcanbere-startedn caseit
waitsfor anevent. It’' srelevantwhenataskis nottheowner
of alock, andhencesomeothertaskis supposedo achieve
theproperty Thenthetaskmustwait for this propertyto be
achieved,hencethe propertybecomesucha condition.

The statespaceof the modelcannow be declared see
Figure6. The databases representedby the variabledb,
which is an array mappingproperty namesinto property
values. The propertylock tableis representethy the vari-
ablel ocks, which is an array mappingproperty names
into locks. In the L1sp code,the propertylock tableis rep-
resentedasallist of (propertyname,lock) pairs. Hence,in
the L1sP program,the existenceof a lock [on a property
namepn is representedly thefactthatthe pair (pn, 1) isin

thelist. Sincewe modelthe propertylock tableasa map-
ping from propertynamesto locks, the propertynamepn
will alwayshave an entry, andwe thereforehave to model
the non-eistenceof a lock differently We have resened
thepropertyvalue0 for thoselocksthatare“non-existent”.
Thatis, if a propertynamemapsto a lock with property
valueO, it meanst is notlocked (correspondingo not be-
ing in thelist in the L1sSP program).The constant:

#define undef _value 0

is introducedo denotethis undefinedpropertyvalue.

Two variablesareintroducedvhichstorethestatusof the
eventsandthetasks.ThevariableEv mapseventsinto event
statusrecordsandsimilarly, thevariableact i ve_t asks
mapstaskidentifiersinto taskstatusrecords.

Property_Val ue db[NO_PROPS];
Lock | ocks[NO_PROPS] ;
Event Ev[NO_EVENTS] ;
Task active_t asks[NO_TASKS] ;
Figure 6. Variables
3.3 Events

Two operationsare defined on events, correspond-
ing to waiting for an event and signaling an event.
These operations are representedby the procedures
wai t f or _event ®, Figure7, andsi gnal _event, Fig-
ure8.

inline wait_for_event(this,a, p) {
at oni c{

append(t hi s, Ev[a] . pendi ng_t asks);
append(a, active_tasks[this].waiting_for);
active_tasks[this].prop.name = p. nane;
active_tasks[this].prop.value = p.val ue;
active_tasks[this].state = SUSPENDED;
active_tasks[this].state == RUNNI NG

Figure 7. wait _for_event

The procedurewai t f or _event takesthree param-
eters: the parametett hi s (type Taskl d) identifiesthe
task that calls the procedure,and hencethe task that

5A procedurenai t f or _event s alsoexists, but it is very similarto
wai t for_event.

inline signal _event(a) {
atom c{
Taskld t;
Eventld e;
l'ist pending = [NO EVENTS] of {Eventld};
Ev[a].count = Ev[a].count + 1;
copy(Ev[a] . pendi ng_t asks, pendi ng) ;
do
pendi ng?t ->
i f
(active_tasks[t].prop.value ==
undef _val ue
[
db_query(active_tasks[t].prop))
->
do
active_tasks[t].waiting_for?e
-> renove(t, Ev[e]. pendi ng_t asks)
enpty(active_tasks[t].waiting_for)

-> break
od;
active_tasks[t].state = RUNNI NG
i1 else
fi
enmpty(pending) -> break
od
}
}

Figure 8. signal _event

wants to wait for an event to happen. The parame-
ter a (type Event | d) identifiesthe event to be waited
for; andfinally the parametemp (type Pr operty) rep-
resentsa property that must be satisfied in addition
to the occurrenceof the event before the calling task
can be re-started. For example, when a task wants
to wait for some other task to achieve the property
CAMERA_ONS, then it calls this procedureas follows:
wai t f or _,event (t hi s, MEMORY_EVENT, CAMERA_ON) .
We shallreferto this propertyastherestartcondition

The body of the procedureis executedatomically as
within a critical section.First, the calling taskis appended
to the events list of pendingtasks(thosewaiting for the
eventto occur).Secondthe eventis appendedo thetask’s
list of eventsit is waiting for. Third, the restartcondition
p is storedin the tasks statusrecordin the pr op field.
Note that sincePROMELA doesnot allow for assignments
to recordvariables,eachfield hasto be updatedindividu-
ally. Finally, the taskis suspendedby updatingthe task’s
st at e field. Thewaitingitselfis realizedby executingthe
statement:

active_tasks[this].state == RUNNI NG

8Thatis, the propertynameCAMERA musthave the value ON.

This is a booleanvalued expression (without side ef-

fects), and accordingto the semanticsof PROMELA, it

can only execute, and terminate, if its value is true.

Hence, the calling task will wait until it becomestrue,

the intention being that the si gnal _.event procedure
at some later point will assignthe value RUNNI NG to

active_tasks[this].state.

Theproceduresi gnal _event takesonesingleparam-
eter namelythe eventa (type Event | d) to be signaled,
andthenbasicallyrestartsall taskswaiting for thatevent,if
their restartconditionis satisfiedthatis. Threelocal vari-
ablesaredeclaredt , e andpendi ng, thelastintendedto
hold the list of taskswaiting for the event. First, the event
counterin incremented.The event counteris usedby the
daemonto determinewhethera new, and untreatedsignal
hasarrived,seeFigure22 pagell. Thenthe event'slist of
pendingtasksis copiedinto the local pendi ng variable,
which hereafterin aloop is examined,taskby task. Each
task is extractedby the statemennhext (pendi ng, t),
andhencestoredin thelocal variablet .

Now, for eachsuchwaiting taskt , if the tasks restart
conditionpr op is satisfiedit is restarted.The restartcon-
dition is satisfied,if eitherits propertyvalueis undefined
(equalsundef _val ue), or if it indeedis satisfiedin the
databaseThelatteris the casef theexpression:

db_query(active_tasks[t]. prop)

evaluatedo true. Thefunctiondb_quer y, Figure9, takes
asparameter propertyp (type Pr operty), andreturns
true if the databasesatisfiest (the propertynamedenotes
thepropertyvalue).

#define db_query(p)
db[p. nane] == p.val ue

Figure 9. db_query

Hence, in casethe restart condition is satisfied, an
inner loop is entered,in which all eventsin the tasks
wai t i ng_f or list areexaminedandfor eachsuchevent:
the taskis removed from the event’s list of pendingtasks.
In otherwords, the taskis removed from all eventssince
it's now restarted. In the LisP code, the body of the
si gnal _event procedureis embeddedvithin a critical
section. A directmodelingof this in PROMELA resultsin
anat on ¢ constructaroundthebody

3.4 The Tasks

Tasks are modeled as PROMELA processes. Be-
fore we define what a task is, we shall, however, in-
troduce a collection of procedures. The procedure

fail i f_i nconpati bl e, Figurel0,is calledby atask
just beforeit tries to snarfa property in orderto check
whetheror notthisis in conflictwith alreadyexistinglocks.
The proceduretakes as parameterthe property p (type
Pr oper t y) to be snarfed andreturnstrue if someother
taskhasalreadysnarfedthe propertyname,but with a dif-
ferent,andthereforeincompatible propertyvalue. Recall
that if the property namedenotesa value different (! =)
from undef _val ue in the lock table, thenit hasbeen
locked.Theresult of this testis storedin the return vari-
ableer r, which we shall seeis usedto direct control in
thecalling context.

inline fail _if_inconpatible_property(p,err) {
if

(1 ocks[p. nane] . val ue ! = undef _val ue &
| ocks[p. nane] . val ue != p.value) ->
err =1
el se

fi
}

Figure 10. fail _if_incompatib le_property

Theproceduresnar f _pr operty_| ock, Figurell,is
calledby ataskto snarfa property The procedurdakesas
parametetheidentity, t hi s (typeTaskl d), of thecalling
task;andthe property p (typePr oper ty), to be snarfed.
The succes®f the operationis written backinto the result
variableerr .

inline snarf_property_lock(this,p,err) {
at om c{
fail _if_inconpatible_property(p,err);
append(thi s, | ocks[p. nange] . sub);
i f
| ocks[p. nane] . val ue == undef _val ue ->
| ocks[p. nane] . val ue = p. val ue
| ocks[p. nane] . achi eved = db_query(p)
el se
fi;
si gnal _event (SNARF_EVENT)
}
}

Figure 11. snarf_property _lock

Theprocedurdirst checksvhethertheoperatiornis com-
patiblewith the alreadyexisting locks. Thatis, theremust
not be alock with the samepropertyname but with a dif-
ferentpropertyvalue. Note thatthe resultof this checkis
writteninto theer r variable.In the calling contet, Figure
17, we shall later seethe effect of this resultvariablebe-
comingtrue: aninterruptwill occurandterminatehetask.

The taskis thenappendedo the list of subscribergo the
property:thosethatwantit to becomeirue. Then,in case
thepropertyis in factnotalreadyin thelock table,it is “in-
serted”:thepropertynameof p is setto denotetheproperty
valueof p; andthe achi eved field is setto true if the
propertyalreadyholdsin the databasécall of db_quer y),
otherwiseto false. Finally, the SNARF_EVENT is signaled
with theresultthatthedaemorwill berestartedf waiting.

After having snarfedhepropertyit is now upto thetask
to achieve the property-if it is the ownerthatis. A taskis
the ownerof a property if it wasthefirst to subscribdo it,
andhencethefirst elementin the propertys subscribetist
in thelock table. The procedurd i nd_owner , Figure12,
determineghis. It takesasparametethe propertyp (type
Pr oper t y), andreturnsin theresultvariableowner (type
Taskl d) theownerof thatpropertyin thelock table.

inline find_owner(p,owner) {
| ocks[p. nane] . sub?<owner >

}

Figure 12. find _owner

Whena taskfinally wantsto achieve a property it calls
the procedureachi eve_l ock_property, Figure 13.
The procedurgakesasparametetheidentity, t hi s (type
Taskl d), of the calling task; and the property p (type
Pr operty), tobeachieved. Theresult(successdf theop-
erationis storedn theresultvariableer r (typebool). The
taskcanonly achieve the propertyif it's the owner. Hence,
firstit is determinedvhichtaskis the ownerof theproperty
p: theproceduresall f i nd_owner (p, owner) storeshe
owner in the result variable owner . In casethe owner
equalsthecalling task(t hi s), the propertyis achiezedby
acall of theprocedureachi eve (definedin Figurel4and
describedbelow); andtheachi eved field is setto true.
Ontheotherhand,if thetaskis not owner, it mustwait for
the owner (someothertask)to achieve the property This
waitingis initiatedby a call of wai t _f or _event with the
propertyp asrestartcondition. Thatis, the calling taskwill
only berestartecbn amemoryevent,if alsothe propertyp
hasbeenachieved,andhences satisfiedn the database.

The procedureachi eve, Figurel14,is theonethatre-
ally achievesthe propertyby updatingthe databasén case
thepropertyis notalreadysatisfiedn thedatabaseThepro-
cedurelakesasparametethepropertyp (typePr operty)
to be achieved. If the propertyis alreadysatisfiedin the
database i.e. db_quer y(p) evaluatedo true —thepro-
cedurereturnssuccessfully. Otherwisgel se), in casethe
propertyis notalreadysatisfied a non-deterministichoice

TThefirst if—branchis equialentto db_quer y(p) -> skip

inline achi eve_l ock_property(this,p,err) {
Taskl d owner
fi nd_owner (p, owner);
i f
:: owner == this ->
achieve(p,err);
| ocks[p. nane] . achi eved = true
;. else ->
wait _for_event (this, MEMORY_EVENT, p)
f

}

Figure 13. achieve_lock_property

is madebetweersuccess updatingthe databas¢o achieve
theproperty andfailure: settingtheboolearresultvariable
err to true. This non-determinisnreflectsthe fact that
achiezementcanfail, andwe abstraceway from thedetails
aboutthepossiblecause®f failure.

inline achieve(p,err) {
if
;1 db_query(p)

i1 else ->
i f
: db[p. nane] = p.val ue
roerr =1

f
f

Figure 14. achieve

Oncethetaskhasachiezedthepropertyit is readyto ex-
ecuteits realjob while assuminghatthe propertyis invari-
antly satisfiedthedaemommustinterveneandstopthetask
if thisis notthecase).Theprocedure| osur e, Figurel5,
representshis job. Its bodyis simple: a non-deterministic
choicebetweerjustaski p statemenandf al se. In case
thefirstif-branchis chosenski p is executedandthepro-
cedurereturnsimmediately In caseontheotherhand,the
secondranchis chosentheexecutionof f al se will make
thecallingtaskblock, sincef al se cannotexecuteandter-
minatedueto the semanticof PROMELA. This blocking
is supposedo simulateatime consumingcomputationand
is neededaterin orderto corvenientlyformulatea certain
correctnesgropertyto be verified. The correctnesgrop-
erty basicallysaysthatin casethe propertyis broken (i.e.:
is no longer in the database)the taskwill be terminated
Now, supposec| osur e alwaysterminated this property
would betrivially satisfied- hencetheblockingalternatve,
allowing usto verify thatthe daemorreally explicitly and
violently abortsthetask.

Assumethatthetasknow hascalledthecl| osur e, and

inline closure() {
if :: true -> skip :

}

true -> hang f

Figure 15. closure

thatthis terminates- eitherby choosingtheski p branch,
or becausédt hasbeenabortedby the daemon.In this case
the snarfedpropertyno longerneedsto be satisfiedin the
databaseat leastso far aswhatconcernghis task. Hence,
our taskmustreleasehe property meaningthatit mustbe
removedfrom the propertylock table. Thiswill allow other
tasksto snarfand lock the sameproperty namebut with
differentpropertyvalues. The releasingis doneby a call
of the procedurer el ease_| ock, Figure16. It takesas
parametetheidentity, t hi s (typeTaskl d), of thecalling
task;andthe property p (typePr opert y), to bereleased.

inline release_lock(this,p) {
at oni c{
remove(this, | ocks[p.nane].sub);
i f
;. empty(l ocks[p. nane].sub) ->
| ocks[p. nane] . val ue = undef _val ue
nenpt y(1l ocks[p. nane] . sub)
f
}
}

Figure 16. release _lock

Its bodyis embeddeadvithin anat om ¢ to modelacrit-
ical sectionin the L1sp code. The procedurebasicallyre-
movesthe taskfrom the propertynames subscribetist in
thelock table,sincethe taskno longersubscribego it. In
casethe subscribelist therebybecomesmpty— no other
taskssubscribe-thelock mustberemovedcompletelyfrom
thelocktable.Thisis doneby assigningheundef _val ue
aspropertyvalueto the propertynamein the table. Recall,
thatthisis theway we modeltheabsencef alock (a prop-
erty namemapsto undef _val ue), whereasn the Lisp
programthelock would simply beremovedfrom thelist of
locks.

We cannow finally definethetop-level procedure
execut e_t ask, Figure 17 — called by a task— which
sharfsthe propertyto be maintainedachiesesit, executes
thebody, andfinally releaseshepropertyagain.Theproce-
duretakesasparametetheidentity, t hi s (typeTaskl d),
of the task; andthe property p (type Pr operty), to be
achievedandthereaftemaintainedo the endof thetask.

We have up until now seenthe variable err oc-

curring as result parameterto most of our procedures.

inline execute_task(this,p)

{
bool err =0
{
snarf_property_l ock(this,p,err);
achi eve_| ock_property(this,p,err);
cl osure()
}
unl ess
{err || active_tasks[this].state == ABORTED};

active_tasks[this].state = TERM NATED;

{rel ease_| ock(this,p)}
unl ess
{active_tasks[this].state == ABORTED}

Figure 17. execute _task

This variable is declared as a local variable at this
outermost level, and hence passedas actual param-
eter to the proceduressnarf property_|ock and
achi eve_l ock_property. Thecallsof thesetwo pro-
ceduresaareembeddedvithin anunl ess constructof the
form

{snarf;adieve;job} unl ess {conditior}.

where the condition is that either err is true, or

(I1) the task has been aborted by the daemon:
active_tasks[this].state == ABORTED.Aswe
shall seein the next section,the daemonabortsa task ex-

actly by assigninghe value ABORTED to the st at e field

in the tasksstatusrecord. The semanticof the unl ess

construcis suchthatthe snarfing achieving andjob is per

formedto the end, unlessthe conditionbecomesgrue, in

whichcasehewholestatementerminatesbruptly Hence,
in the casethat eitherthe snarfingor the achiezementgoes
wrong (er r becomesrue), or in the casethatthe taskis
abortedby the daemon-thewhole operatiorterminates.

Oncethe snarfing, achieving and job has beentermi-
nated eithernormallyor abnormally the statement:

active_tasks[this].state = TERM NATED,;

is executed. This is part of the modeling of the Lisp
unwi nd- pr ot ect construct.The purposeof the assign-
mentis to “restore” the value of the st at e field in case
the task hasbeenabortedby the daemon;and hencethis
field hadgotthevalueABORTED. Restorincheremeansas-
signing a value differentfrom ABORTED, sincethe value
ABORTED will resultin animmediateterminationof the
statementhatfollows. The laststatemenhamelyreleases

the propertyfrom thelock table,but is abruptlyterminated
in casethe st at e field has,or getsthe value ABORTED

by the daemon,in casethe daemonat this point discov-

ersaviolation. This is hencethe secondexampleof how

thePROMELA unl ess interruptconstrucis usedto model
taskabortion.

We arenow ableto definethe processype

Achi evi ng_Task, Figure 18, of which a processis
spavned/instantiatedor eachtask. It takes as parameter
its own identity, t hi s (type Taskl d), which will be de-
terminedin the initialization section,Figure 25. A local
variablep is declaredwhichis assignedhe propertyto be
sharfedandachievedby thetask.In orderto reducehestate
spacdo modelcheck,we have focusedon propertyname0
(p. nane 0), andwe arbitrarily let the taskachieve a
propertyvaluewhichis identicalto thetasksidentity: 1 or
2 since,aswe shall see,only two taskswill be spavned.
Finally the main procedureis called, which performsthe
snarfing,achiezement,job andrelease.Note thatall tasks
in this modelperformthe samejob (cl osur e). Thisis an
exampleof an abstractiorfrom the L1sp code,wherede-
tails regardedasunimportantfor the verificationhave been
omitted.

proctype Achi evi ng_Task(Taskld this)
{ Property p
p.name = 0
if
;7 this == 1 -> p.val ue
i1 this == 2 -> p.val ue
fi;
execute_task(this,p);

I8

Figure 18. Achieving _Task

3.5 The Daemon

The daemornis responsibldor detectingwhetherviola-
tions of locks occurin the databaseThatis, it mustreact
in casea propertynamepn in the lock tableis locked to
a propertyvalue pvy, andthe correspondingachi eved
field is setto true (hencea taskrelieson it andis exe-
cuting its job), but pn denotesa valuepv, # pv; in the
databaseln that casethe daemommustinterruptthe tasks
relyingontheproperty(pn, pv;) andrepairtheviolationby
updatingthe databaseassigningpv; to pn again. The pro-
cedurd nt er r upt _t ask, Figurel19,takesasparametea
task,t (typeTaskl d), to beabortedanddoesthis by sim-
ply assigninghevalueABORTEDto thest at e field of the
tasks statusrecord. This will causetherelevantunl ess
constructo terminatethetask(Figurel17).

10

inline interrupt_task(t) {
active_tasks[t].state = ABORTED

}

Figure 19. interrupt _task

The procedurepr opert y_vi ol at ed, Figure 20, is
usedto determinewhetherlocks have beenviolated. It is
calledfor eachpropertynamehaving an entry in the lock
table (0 and1 in ourreducedcase) andtakesasparameter
this propertynamepn (typePr oper t y_Nan®e); returning
theresultbackinto the variablel ock_vi ol at i on (type
bool). Thebodyconsistf a singleassignmento there-
sultvariable which becomesrue iff. the propertynameis
locked (propertyvalueis defined),hasbeenachieved, but
hasa propertyvaluedifferentfrom the onein thedatabase.

inline property_viol ated(pn,violation) {
at oni ¢{
viol ation
(1 ocks[pn].val ue ! = undef_val ue &
| ocks[pn] . achi eved &
db[pn] != | ocks[pn].val ue)

Figure 20. property violated

The procedurepr operty_vi ol at ed is called from
the procedurecheck | ocks, Figure 21, which checks
the whole property lock table for violations. This is
donein a loop that iteratesover all the property names
{0...NO_PROPS — 1}. In fact, therearetwo suchloops.
In the first loop, in caseof a propertynamepn beingvi-
olated (denotingsomethingdifferentin the databasehan
in thelock table),all the subscriberso thatpropertyname
are interrupted. This is done by first taking a copy of
this subscriberlist, storing it in the local variable sub,
and then extracting eachtaskt from sub, one by one
(next ('sub, t)), andinterruptingit.

In the secondoop, a br eak statementausegermina-
tion assoonasa violation is found, the purposebeingjust
to examinewhetherthereareary violationsleft. This re-
sult is returnedin the resultvariablevi ol ati on of the
check_| ocks procedure.Theresultwill thenbeusedin
thecalling context to decidewhetherthedatabasshouldbe
recovered.

The two loops are also presentin the Lisp code,and
sincethey resultin an unexpectedbehaior found during
verification,to be explainedin section4.4, we quoteErann
Gat’s explanationof thecode:

inline check_| ocks(lock_violation) {
Property_Nanme pn
list sub [NO_TASKS] of {Taskld};
Taskld t;
pn = O;
do
pn < NO_PROPS ->
property_viol ated(pn, | ock_violation);
if
l ock_violation ->
at omi c{copy(| ocks[pn]. sub, sub) };
do
sub?t -> interrupt_task(t)
enmpty(sub) -> break

od
el se
fi;
pn++
el se -> break
od
pn = O;
do

pn < NO_PROPS ->
property_viol ated(pn, | ock_violation);
if
| ock_violation -> break
el se
fi;
pn++
. else -> break
od

Figure 21. check_locks

The structue of this codeis complicatedby the
designrequitementthat an external processnay
be responsibldor restoringviolated properties.
(In the caseof the DS1RA this is the MIR pro-
cess.) Sotasksneedto be able to decide when
a propertythat they wantmaintainedis violated,
if they want to wait for the external processto
restoe the property or if they wantto fail right
away If all thetasksthatrely ona violatedprop-
erty fail right awaythenthere is no needto re-
storetheproperty sincenooneisrelyingonit any
mote. Sochedk-locksmalesonepassthroughthe
property locks and injectsfailuresinto all tasks
that rely on violatedproperties. It thenyieldsto
give all thosetasksa chanceto abortthemselves
if they chooseto. Thenit cheds to seeif there
are any violated propertiesleft. Thisis returned
as a booleanto the first part of the maintain-
properties-daemorwhich runsin aninfiniteloop.

The daemonprocessitself will be an instanceof the
processtype Daenon, Figure 22, which as parameter
takes its own identity, t hi s (type Taskl d). It de-

11

claresthreelocal variables: | ock_vi ol ati on, to hold
the result of check_ ocks; event _count, to keep
track of new events; andfirst ti ne, which is true
only when the daemonstarts. The body consistsof an
infinite loop, which for eachiteration doesthe follow-
ing. The procedurecheck_ ocks is called to deter
mine if there are ary violations. If there are, the pro-
ceduredo_aut ormat i c_recovery is called, which has
not been shovn here, but which basically repairs the
databaseby making it consistentwith the lock table.
Thatis, do_aut omat i c_r ecovery performstheupdate
db[pn] = pv for eachpropertynamepn, wherethelock
tablemapspn to pv, but thedatabaselb doesnot.

proctype Daenon(Taskld this) {
bit lock_violation
byte event_count = 0
bit first_tinme = true
do
check_l ocks(1 ock_vi ol ation);
i f
| ock_violation ->
do_aut omati c_recovery()
i1 else
fi;
i f
('first_tinme &&
Ev[MEMORY_EVENT] . count +
Ev[SNARF_EVENT] . count != event _count)
->
event _count
Ev[MEMORY_EVENT] . count +
Ev[SNARF_EVENT] . count
;o else ->
first_time = fal se
wait_for_events(this,
MEMORY_EVENT, SNARF_EVENT)

f
od

Figure 22. Daemon

Then, in the secondif construct,it is decidedwhether
thedaemorshouldstopandwait for anew memoryor snarf
eventto occur(call of wai t _f or _event s), or whether
it shouldcontinuewith yetanotheriteration,calling
check_| ocks andperhaps
do_aut omat i c_r ecovery. Anotheriterationis needed
if a memoryeventor a snarfeventhasoccurredsincethe
daemonwasrestartedast time. This is expressedasfol-
lows: whenfirst _time is true (initial state),the dae-
monsimply callswai t _f or _event s, andthenwaits for
eitheraMEMORY_EVENT or aSNARF_EVENT to occut The
procedurenai t _f or _event s hasnotbeenshawvn, but is
likewai t _f or _event , Figure7, exceptthatnotone— but
eitherof two eventsarewaitedfor. A seconddifferenceis

that a booleanvariabledaenon_r eady is setto true as
thelastthing beforethe daemorstartswaiting. Thisis used
during initialization, Figure 25, aswe shall see. Now, in

caseit’s notthefirstiteration,thetest:

Ev][MEMORY_EVENT] . count +
Ev[SNARF_EVENT] . count
| =

event _count

is executed. It evaluatesto true in casethe eventcounter
event _count differs from the sum of the event coun-
tersfor the memoryandsnarfevents. If thereis a differ-
ence,it meanghattherehasbeenan eventsincelasttime
event _count wasupdatedandthis mustresultin yetan-
otheriterationbeforecallingwai t _f or _event s. Before
thisextraiteration,theevent _count variableis, however,
updated.

3.6 The Environment

Violationsareintroducedby theervironmentheremod-
eled by the processype Envi r onnment , Figure23. An
instantiationof this will runin parallelwith the tasksand
the daemonandmay causea databasehangeat ary mo-
mentin time. The changeis herefixed to propertyname
0 gettingpropertyvalue0. This will introducea violation
in casea lock hasbeencreatedfor propertyname0 with
avaluedifferentfrom 0. The MEMORY_EVENT is further
more signaledto wake up the daemonjn caseit’s not al-
readyrunning. The daemonshall then hopefully discover
theviolationjustintroduced.

proctype Environment ()
{ atomic{
db[0] = O;
si gnal _event (MEMORY_EVENT)
}
};

Figure 23. Environment

3.7 Initialization

All processeshe daemonandthe tasks,areall instan-
tiatedwith the procedurespawn, which takesasparame-
tertheparameterizetiask (apr oct ype) to bespavned,
andasa secondparameteit takesthetaskidentityt (type
Taskl d) of thetaskto be spavned. The secondparame-
teris thenfed asactualparameteto thefirst parametem a

12

#defi ne spawn(task,t)
atom c{
active_tasks[t].state = RUNNI NG
run task(t)

}

Figure 24. spawn

r un statementBeforethathappensthetasksst at e field
getsthevalueRUNNI NG,

Finally, thesystenisinitialized by spavningthedaemon
with identity 0, thetwo taskswith identity 1 respectiely 2,
andthenthe ervironment,seeFigure 25. Beforethe tasks
are spavned, however, the daemonis waitedfor to termi-
nateits own localinitialization. Thisis doneby waiting for
thevariabledaenon_r eady to becometrue. In fact,this
modelsthe factthatthe daemornwill be startedbeforeary
othertaskin thesystent

init

{
spawn(Daenon, 0) ;
daenon_r eady == true;

spawn(Achi evi ng_Task, 1) ;
spawn(Achi evi ng_Task, 2);
run Environnent ()

Figure 25. initialization

4 Analysiswrt. SelectedProperties

4.1 Identifying Propertiesto be Verified

The model hasbeenanalyzedwrt. the following two
propertieshereexpressednformally:

RELEASE Property: A taskreleasesall its locks befoe it
terminates.

ABORT Property: If an inconsistencyoccurs betweenthe
databaseand an entryin the lock table, thenall tasksthat

8In an early model, the taskswere spavned without waiting for the
daemonput thatleadto the discovery of an error by the modelchecler,
seesection4.7. The errorwasbasicallythata lock violation could occur
beforethe daemongot to its initial waiting point, which the first time is
unconditional!;andhencethe daemorwould justignoretheviolation and
callwai t for _events.

rely onthelock will beterminated eitherby themselvesr
by thedaemornin termsof anabort.

In thefollowing we shalldemonstratéow we have for-
mulatedthesepropertiesin termsof PROMELA assertions
(assert—statementahd LTL formulae,andwe shall shav
the resultsof applyingthe SPIN model checler to verify
theseproperties.It turnsout thatnoneof themaresatisfied
in the presentednodel, a discovery that haslead the RA
programmerso make correctionsn the Li1spP code.

The verificationof the two propertiedeadto the direct
discovery of four errors(wrong code)— onebreakingthe
REL EASE propertyandthreebreakinghe ABORT property
All of theseerrorsare classicalin the sensehatthey arise
dueto processeiterleaving in unexpectedways. Hence,
for example,two errors can be correctedby introducing
critical sectionsaroundthe troubledcode. Furthermorea
lessserious put at thattime yet undiscweredefficiency er-
ror (code executedtwice insteadof once)was discovered
just by observinggeneratedracesfrom the modelcheck-
ing. Hence atotal of five errorswereidentifiedin theL1sp
code,four of which beingimportant. In additionto this, a
verification“highlighted theneedfor a medanismto insure
thatthedaemorhasreahed'steadystate’ before proceed-
ing”. Althoughthiswasnotconsideredsadirecterror, we
have reportedt here.

4.2 Error1—The RELEASE Property

RELEASE Property:A taskreleasesll its locksbefore it
terminates.

4.2.1 Formalizing The Property

In orderto formalizethis property we needto definewhat
it meandor ataskto have releasedts locks. Thefunction
not _subscri ber in Figure26returnstrue if taskt does
not subscribeo propertynamepn, hencehasreleasedt’s
lock onpn.

#defi ne not_subscriber(this, pn)
'l ocks[pn] . sub??[eval (this)]

Figure 26. RELEASE predicate

To statethe RELEASE property we modify the defini-
tion of the processAchi evi ng_Task, Figure18, adding
anassert—statemeafterthecall of execut e_t ask. This
modificationis shavn in Figure27.

When a task terminategend of execut e_t ask), we
expectthatit is no longersubscribeiof the propertyname

13

proctype Achi evi ng_Task(Taskld this)
{ Property p

p.name = 0

i f

i1 this == 1 -> p.val ue
:: this -> p.val ue
fi;
execute_task(this,p);
assert (not _subscriber(this, p.nane))

b

=

non
N .

Figure 27. Formalization of RELEASE property

it hassnarfedp. nane), andhencewne expecttheassertion
to be satisfied.

4.2.2 Error Detection

Runningthe SpiIN modelchecler on the modifiedprogram
yieldsanerrortraceillustratingthatthe assertioris not al-
wayssatisfied. The trace(shortenedjlescribeghe follow-
ing sequencef events:

1. A task starts, running processAchi evi ng_Task
in Figure 27. This implies a call of the procedure
execut e_t ask, definedin Figurel?.

2. The procedure execut e_t ask does the snarf-
ing, the achieving, the closure call, and then
executes the active_tasks[this].state =
TERM NATED statementyeadyto releasadts lock by
callingther el ease_l ock procedure.

3. At this point, just beforethecall of r el ease_l ock,
the Envi r onment , definedin Figure23, introduces
aninconsisteng in thedatabassuchthatthe property
value of propertyname0 becomed in the database
while it is expectedto be differentfrom 0 by the run-
ning task.

4. TheDaemonFigure22,detectghisinconsisteng and
abortsthe taskin thecheck_| ocks procedureFig-
ure 21, by calling the procedura nt er r upt _t ask
definedin Figure 19. Thatis, the statusof the task
become#ABORTED.

Thewaytheexecut e_t ask is programmedthis abor
tion will at this point resultin an exit of this procedure,
henceskippingr el ease_l ock. This is causedby the
PROMELA semantic®f theunl ess constructasoccurring
in (Figurel7):

{rel ease_l ock(this, p)} unless
{active_tasks[this].state

ABORTED}

Hence, even though the snarfing, achieving, and clo-
sureis protectedagainstabortion(if anabortoccursthere,
r el ease_|l ocks will becalledanyway),thelock releas-
ing itself is not protected:if anabortoccurshere,the lock
releasingis abandoned.This reflectsthe semanticof the
appliedEsL construcof theform“Protect P Exit Q
End” executingP andthenQ (the lock releasing)with the
addition,thatif anabortoccursduringthe executionof P,
theremaindeiof P is skipped,andQgetsexecuted.Hence,
theideais thatQalwaysgetsexecuted gvenif anabortoc-
cursduringthe executionof P. The unexpectedsituationis
thatanabortcanoccurduringthe executionof Q with the
resultthattherestof Qwill notbeexecuted.

4.2.3 Error Correction

Theidentifiederrorcanbe correctedoy protectingthelock
releasingitself againstabortion. This we have donein a
modifiedversionof the PROMELA modeP, suchthatlock
releasingcannotbe aborted.Hereafterthe RELEASE prop-
ertyis verified correctusingthe SPIN modelchecler. How
themodificationis donein the L1sp programis beyondthe
scopeof the presenpaper

4.3 Error 2—The ABoRT Property

As alreadymentionedthreeverificationsof this property
were performed eachdemonstratingn errorin the model
causinghefalsificationof the property We will presenthe
first verificationin this section.

ABORT Property: If an inconsistencyccurs betweenthe
databaseand an entryin the lock table, thenall tasksthat
rely onthelock will beterminated either by themselvesr
by thedaemorin termsof an abort.

4.3.1 Formalizing The Property

Our verificationwill be concretein thatwe shall focuson
taskl. We shallstate thatif taskl hassnarfedandachieved
propertyname0, assumingt to denotepropertyvaluel in
the databasdas statedin Figure 18) thenif this assump-
tionis brokenby theervironmenttaskl will beterminated.
Firstof all, weformally definewhatit meandor task1’'s as-
sumptionto be broken,andwhatit meansfor task1 to be
terminated Figure28 shavs two suchpredicates.

Thepredicata ask1_property_broken
returnstrue in caseof aninconsisteng betweenl ocks
(mapping0 to 1) and db (mapping0 to 0) in a situa-
tion where the task assumeghe property to have been

9Basicallyby remaving the unl ess constructattachedo the call of
rel ease.l ock

14

#define taskl_property_broken

(locks[0].value == 1 &
| ocks[0] . achi eved &
db[0] == 0)

#define taskl_term nated
(active_tasks[1].state
active_tasks[1].state

TERM NATED | |
ABORTED)

Figure 28. ABORT predicates

achieved. The predicatet ask1_t er m nat ed is true
whenthe stateof task1 is either TERM NATED, setby it-
self, or ABORTED, setby the daemon.The ABORT prop-
erty can now be statedas an LTL formula as shavn in
Figure 29. The propertystatesthat“in all states([]), if
t ask1l_property_br oken holds,theneventually(<>),
at somefuture point in time, t ask1_t er m nat ed will
hold”.

[](taskl_property_broken -> <>taskl_terni nated)

Figure 29. Formalization of ABORT property

It's relevant hereto notethat this propertyonly makes
senseto verify if task1 hasthe potentialof not terminat-
ing at all in caseit’s not aborted. This is the reasonwhy
the closureis definedasin Figure 15. The closurecan
arbitrarily choosethet rue -> fal se branchwhereby
it will hangon thef al se expressionwithout beingable
to progressaccordingto the semanticoof PROMELA. Of
course,in the real Lisp programa taskwill probablyal-
waysterminate andwe arethereforereallyinterestedn the
taskbeingterminatedvithin acertaintime frame.However,
sincePROMELA cannotdealexplicitly with time, we have
choseronly to focusonthedistinctionbetweertermination
(atsomefuture unspecifiedime) andnon-termination.

4.3.2 Error Detection

Applying the SPIN model checler to the above property
yieldsanerrortracedemonstratingthatthe propertyis not
satisfiedin the model. The traceillustratesthe following
sequencef events.

1. The daemon,Figure 22, startsand reachesa waiting
position. Thatis, it callswai t _f or _,event s, where
afterit waitsfor aneventto occur

2. A task, Figure 18, starts; snarfsand achieves suc-
cessfully thereby signaling SNARF_EVENT from

snar f _property_ ock, Figurell, andthenstarts
executingits closure. This closurechooseghet r ue
-> fal se branch. Henceif it is not abortedit will
never terminate(correspondingo a time consuming
computatiorin arealsetting).

3. Thedaemorhasbeenwokenup by thesignalingof the
SNARF_EVENT. No inconsistenciearefound,andthe
daemonthen decidesto wait again. Thatis, it takes
thedecisionto callwai t _f or _event s, but delaysa
bit beforedoingit. Notethe delaybetweeri'decision”
and“action” here.Thedecisionto wait is takenin the
PrRoOMELA modelin Figure22 atthelastel se branch.

4. The ervironment, Figure 23, introducesan inconsis-
teng, andsignalsthe MEMORY_EVENT. However, this
signalwill not affectthe daemonsinceit alreadyhas
decidedto call wai t _f or _,events. It will for ex-
amplenot checkwhetherthe eventcountershave been
updated.

5. Thedaemomow callswai t _f or _event s uncondi-
tionally, andhencestartswaiting. Thetaskhencedoes
notgetaborted andcontinueswith its “big” computa-
tion.

4.3.3 Error Correction

A solutionto the detectedproblemis to embedthe deci-
sionto wait andthewaitingitself into a critical section that
cannotbeinterruptedoy otherprocessedn PROMELA, the
at oni ¢ constructcanbe usedto definea critical section,
and Figure 30 shavs how the Daenon hasbeenextended
with sucha critical sectionaroundthe codeportionthatde-
cideswhetherto wait or not (the lastif-statement).

Reapplyinghe SPiN modelcheclerto verify the ABORT
propertyformulatedin Figure 29 for the modified model,
however, shavs thatthereis still anerrorin the systemas
describedn thenext section.

4.4 Error 3—The ABORT Property

With the correctedmodel,we re-applythe SPIN model
checlerto the sameproperty hopingthatit now holds. As
alreadymentionedandaswill be demonstratedt still does
nothold.

4.4.1 Formalizing The Property

Thepropertyto beverifiedis asbefore,namelytheonepic-
turedin Figure29.

proctype Daenon(Taskld this) {

atomc{ -- added
i f
('first_tinme &&
Ev[MEMORY_EVENT] . count +
Ev[SNARF_EVENT] . count != event _count)
->
event _count =
Ev[MEMORY_EVENT] . count +
Ev[SNARF_EVENT] . count
;o else ->
first_tinme = fal se;
wait_for_events(this,
MEMORY_EVENT, SNARF_EVENT)
fi

Figure 30. New Daenon

4.4.2 Error Detection

Applying the SPIN model checler yields an error trace
demonstrating,that the property is not satisfiedin the
model. The trace illustratesthe following sequenceof
events.

1. The daemon Figure 30, startsand reaches waiting
position. Thatis, it callswai t _f or _event s, where
afterit waitsfor aneventto occur

2. A task, Figure 18, starts; snarfsand achieves suc-
cessfully thereby signaling SNARF_EVENT from
snar f property_ ock, Figurell, andthenstarts
executingits closure. This closurechooseghet r ue
-> fal se branch. Henceif it is not abortedit will
never terminate(correspondingo a time consuming
computatiorin arealsetting).

3. The daemon, Figure 30, has been awakened by
the signaling of the SNARF_EVENT, and calls
check_ ocks'%, Figure21. Now check_ ocks
consistsof two loops, one executedbeforethe other
Thefirst loop looks for violationsandinterruptstasks
dependingpnviolatedpropertiesThesecondoopjust
checksfor violations (and doesnot interrupt tasks).
Hence,the daemonexecutesthe first loop — finds no
violation—andthenis now readyfor executingthesec-
ondloop.

10|n fact, check_l ocks is calledtwice, seesection4.6, andit’s the
second- andlast— call whichis referredto.

4. The ervironment, Figure 23, introducesan inconsis-
teng, andsignalsthe MEMORY_EVENT. However, the
daemonis alreadyrunning. Hence,the only effectis
thatthe MEMORY_EVENT counteris increased.

5. The daemon now executes the second loop of
check_ ocks, andfindstheviolation. Hencejt calls
do_aut omat i c_r ecovery, which repairsthe vio-
lation by updatingthedatabase.

6. Due to the signalingof the MEMORY_EVENT in item
4 by the environment, the MEMORY_EVENT counter
hasbeenincreased,and hencethe daemonwill ex-
ecute check_| ocks again. However, since the
violation has been repaired, the daemonwill not
find anything wrong, and will thereforefinally call
wai t f or _event s andthenwait for anew eventto
occur The taskis still executing,and hasnot been
aborted.

4.4.3 Error Correction

At thetimewhenthiserrortracewasgeneratedye believed
thatit wasin factanintendedbehaior, andonly laterwas
it confirmedto be an unexpectedandundesirechehaior —
anerror. Hence,we did not correctit; andevenwith the
knowledgewe have now, it is notevidentfor ushow to cor
rectthis.

4.5 Error 4 —The ABORT Property

4.5.1 Formalizing The Property

Sincewe originally did not regardthe above situationas
anerror, we continuedthe verificationasif it wasa correct
behaior. Thatis, in orderto investigateheexistenceof ad-
ditional errors,we hadto reformulatethe ABORT property
suchthatthe above situationwasallowed'!. Hence,since
the model may repair an inconsisteng without aborting
tasksthe propertyshallstatethis: in caseof abrokenprop-
erty, theneitherthis is repairedby the daemonpr the task
is terminatedby itself or thedaemon) For this purposeve
introducethepredicatea askl1_property_repairedin

Figure31. This predicatereturnstrue if the databasend
thelock tablematchwrt. to propertyname0 (recallthatwe
have focusedontaskl thatsnarfspropertyname0).

The new correctnessproperty using this new pred-
icate is shavn in Figure 32. The property states
that “in all states, if taskl_property_broken
holds, then eventually either t ask1_t er mi nat ed or
t askl1l_property_repairedwil hold".

11 Even, whenit laterwas confirmedasan error, we did not know how
to correctit, andhencea reformulationof the propertywasstill neededn
orderto avoid therepairsituationto beidentifiedby themodelchecler as
anerror

#define taskl_property_repaired
| ocks[0] . val ue == db[0]

Figure 31. ABORT predicate

[](taskl_property_broken ->
<>(taskl_term nated ||
taskl_property_repaired))

Figure 32. Re-formalization of ABORT property

4.5.2 Error Detection

Applying the SPIN model checler to the above property
yieldsanerrortracedemonstratingthatthe propertyis not
satisfiedin the model. The traceillustratesthe following
sequencef events.

1. Task 1, Figure 18, starts, and eventually calls
achi eve_l ock_pr operty, Figurel3. This proce-
durecontainghetwo lines:

achi eve(p,err);
| ocks[p. nane] . achi eved = true

That is, a call of achi eve, which updatesthe
databaseandthen an assignmento the achi eved
field. In thetrace,theachi eve procedurds called,
andthenthetaskexecutionis delayedhence the as-
signmento theachi eved field is delayed.

2. At this point, the Envi r onnment , Figure 23, intro-
ducesan inconsisteng in the databasesuchthat the
propertyvalue of propertynameO becomed) in the
databasehencedestrysthejustachiezedproperty

3. ThedaemonFigure30, awakenedby the ernvironment
changestartslooking for an inconsisteng, but finds
nonesincetheachi eved field hasnot beensetyet,
andthe daemonrequiresthis to be true in orderfor
an inconsisteng to be existing, seethe definition of
proceduregr operty _vi ol at ed Figure20. Hence,
thedaemordiscoversnothingandgoesto sleepagain.

4. The task from above now assignstrue to the
achi eved field, andcontinuesasif everythingwas
consistent.

Hence,aninconsisteng hasbeenintroducedbut it has
not beendiscoveredby the daemon,and hence,is not re-
paired,neitheris thetaskaborted.

4.5.3 Error Correction

A solutionto the problemis theembeddingf thetwo lines
of codein theachi eve_| ock_pr operty procedurénto
a critical section,suchthat updatingthe databasendthe
achi eved field is alwaysdonein oneindivisible action.
For this purposene introduceanat omni ¢ constructround
thetwo linesin the PROMELA model,asshavn in Figure
33.

inline achieve_l ock_property(this,p,err) {
Taskl d owner;
fi nd_owner (p, owner);
i f
owner == this ->
atomc{ -- added
achi eve(p, err);
| ocks[p. nane] . achi eved = true

el se ->
wai t _for_event (this, MEMORY_EVENT, p);
fi
}

Figure 33. New achi eve_l ock_property

The SPIN model checler now certifiesthatthe ABORT
propertyin Figure32is satisfiedn thisnew model.

4.6 Error 5—An Efficiency Problem

During the examinationof the errortracesgeneratedby
theverificationsabove, yetafifth errorhasbeendiscovered
in the L1sp code. In the PROMELA modelit concernghe
procesaenon in Figure22.

It occursthatcheck_l ocks is calledtwice whenever
the daemonhashungaftera call of wai t f or _.event s,
and then is restartedafter a signal to one of the events
it waits for. That is, when one of these events is
signaled by a call of si gnal _event, Figure 8, the
event counter for that event is incrementedin addition
to the restartof waiting tasks. This meansthat when
the daemonhas executedcheck_| ocks (and perhaps
do_aut omat i c_r ecover y) oncethenthetest:

Ev][MEMORY_EVENT] . count +
Ev[SNARF_EVENT] . count

event _count

will evaluateto true, andhenceanotheriterationof the
loop is begun, re-executingcheck | ocks. The RA pro-
grammingteamhasconfirmedhisasanerror, althoughone
of low priority.

17

4.7 A “Daemon—Ready”Flag PerhapsNeeded

In anearlymodel,thetaskswerespavnedwithout wait-
ing for the daemonto initialize itself. Thatleadto the dis-
covery of anerrorby themodelchecler. Theerrorwasba-
sically thatalock violation could occurbeforethe daemon
got to its initial waiting point, which the first time is un-
conditional!; and hencethe daemonwould just ignorethe
violationandcall wai t _f or _event s. Thiswasnotcon-
sideredan error, becausahe daemonwill alwaysstartbe-
fore everythingelse.However, thefollowing responsdérom
ErannGat shaws thata changeto the L1sp programcould
beneeded.

This would be a problemif the daemonwere
startedlate. However, | don't think this is a
problemin practicebecausall the daemonsare
startedlong before arnything else happens. But
this doeshighlight the needfor a mechanisnto
insurethatall the daemonsave reached'steady
state”beforeproceeding.

Hence,we don't considerthis asa caughterror, but we re-
gardit asanincreasednsightgivento theRA programming
team.

5 Evaluation by the RA Programming Team

This section contains Erann Gat’s evaluation of our
work. His commentswere given during email communi-
cationswhichwerenotoriginally intendedo bepublished.
He, however, laterapprosedtheir publication.

A first sub—sectiorrontainshisresponses ourerrorre-
ports.A secondsub-sectiorontainshis responseto three
generabjuestionposedafterourwork hadbeerterminated.

5.1 The Programmer’'sRemarksto
Our Error Reports

In this sectionwe quoteErannGaton hisremarkso our
error reports. Thatis, for eacherror we discovered,and
which hasbeenexplainedin section4, we quotehis re-
sponseo our reportto him. We presenthequotationsn the
orderthey appearedn time, althoughthis in certaincases
differsfrom the orderof presentatiofin sectiord.

Error 1 — RELEASE Property(sectior4.2):

I think this is a real error. It would only arise if a
task getsa timer interrupt in betweenexiting the body of
the unwind-potectand enteringthe critical sectionof the

release-loks, but 1 dont know of any reasonwhy that
shouldnothapperonoccasion.Thisis a particularly perni-
ciousbug. It arisesonlybecausgouarein a multi-threaded
ervironment,and only in very obscue circumstanceshat
are very unlikely to arise during testing Congatulations!
You havejust corvertedmeinto a believer in formal meth-
ods.

Err or 4 — ABORT Property(sectiord.5):

Ah, goodpoint. You are correct, thisis a bug. I'm im-
pressed! This males two bugs you guyshavediscovered
through formal methodsthat we almost certainly would
never havecaughtanyotherway

Err or 2 — ABORT Property(sectiord.3):

Yep, anotherbug. This oneis an instanceof a classic
pattern: not wrappinga conditionalwait-for-eventsinside
a critical section.Thissort of mistale is very easyto male
and happensll thetimein our code Thanksfor catching
thisone!

Error 5 — EFFICIENCY Problem(sectior4.6):

No,it'sabug, but sinceit’ sjustanefficiencyproblemit’s
prettylow priority.

Error 3 — ABORT Property(sectior4.4):

You have howerver, founda (alreadyknown)designflaw.
Thee can be a significanttime lag betweera propertybe-
ing violatedanda taskbeinginformedof theviolation. The
propertylock daemonshouldreally residein the property
databaseandbe triggered automaticallywhen&er contra-
dictory informationis asserted.Thisis onthelist of things
to do.

Question: Is it notthe case thata taskmight never be
informed?

Ah, good point! | had negglectedto considerthe case
wheee a new assertionthat violatesa lock happensn the
middle of ched-locks. It's hard to get out of a single-
threadedmindset! Thankgor pointingthis out.

Question: Butis it anerror?Oris it “just” unexpected?

Seriouslythough, the intent was that taskswould
be notifiedwheneer a locked property was violated after
initial achievement.In somecasesthis can be important.
For example if a pointing constaint is violatedit mightbe
importantto know evenif the constaint is automatically
restoed.

5.2 The Programmer’s Answersto
3 General Questions

We asled ErannGat three generalquestionsaboutthe
modelcheckingeffort we hadcarriedout. Below we quote
his answergo eachof them.

18

Question1:

Did ourwork have arny impacton yourwork?
Answer:

You'vefounda numberof bugsthat | amfairly confident
would not havebeenfoundotherwise One of the bugsre-
vealeda major designflaw (which has not beenresolved
yet). Sol’' d sayyou havehada substantiaimpact. If noth-
ing elseyouhavehelpedusimprovethequality of our prod-
uctwell beyondwhatwe otherwisewould haveproduced.

Question2:

How seriouswveretheerrorswefound?Any examplesof
whatcouldhave gonewrong?Would they only occurrarely
or beharmless?

Answer:

The errors you found were the sort that would mani-
festthemselvesnly undervery particular setsof circum-
stancesnvolvingprecisetiming, sothesesrrorsrarelyman-
ifest themselvesThis malesthemboth more and lessse-
rious — lessseriousbecausethey are unlikely to actually
occur more seriousbecausef they occur at all they are
likely to occur for the first time underactual flight condi-
tions. Theoverall architecture is designedo be robustin
thefaceof sud errors (we havemultiplelayers of softwae
redundancy}yoit is unlikely that theseerrors would have
causedproblemsmore seriousthanlosttime, but onenever
knows.Everybugis potentiallya mission-killerandgener
ally theonesthatdo kill themissiondo soin waysthatone
neverimaginesuntil it happens.

Question3:

Whatwas/isyour generalattitudetowardsformal meth-
ods,beforeandafterthis exercise?

Answer:

| usedto be very skeptical of the utility of formal meth-
ods. Thisis at leastpartly dueto thefact that | hada mis-
conceptionaboutthe way in which formal methodswvould
be used. | thoughtthat formal-methodsdvocatesvanted
to “pr ove correctness’of softwae systemsl believed(and
still believe) that that is impossible Howerer, what you
havebeendoing is finding placeswhee softwake violates
designassumptionsyhich is not the samething as proving
correctnessTo meyouhavedemonstatedthe utility of this
appmoacd beyondany question.| would like very mud to
learn more aboutyour work.

6 Conclusion

In this paperthe resultsof verifying the RA Executive
have beendescribedandwe shallnow try to presensome
of ourderivedreflections.

6.1 Analysisof the Effort

The major effort without doubtwentinto the modeling,
hencein obtaininga PROMELA programfromtheL ISP pro-
gram. This modelingactiity canbe regardedas consist-
ing of threesub-acwities: compehensionabstractionand
translation seeFigure34. By abstiactionwe meantheac-
tivity of reducingthe programto becomea finite statesys-
tem, smallenoughfor efficient verification. This taskcon-
sistsof remaving irrelevant code, replacinginfinite types
with intenal types, limiting the numberof tasksrunning,
etc. By translationwe meanthe actvity of writing the
actualPROMELA code,for examplemappingthe property
lock list in the L1sP programinto anarrayrepresentatiom
the PROMELA program. A pre-requisitefor modelingis a
certaincompehensiorof thesourceprogramthe L 1sP pro-
gramin this case.Thatis, anunderstandingf the program
thatmalkesit possibleto performgoodabstractions.

abstraction

PROMELA program
4

modéling

s

LISP program translation
A ‘

\ /

~

comprehension

Figure 34. Modeling = comprehension + ab-
straction + translation

The compehensionactiity was clearly the hardest,
sincethe L1sP programusedmary macro-definitionsand
sincewe did not have directaccesdo the programmeirfor
explanations. The translation phasewas also non-trivial
dueto the strengthof the Lisp languagecomparedo the
wealer PROMELA language. Basically LispP is probably
oneof themostpowerfullanguagesroundsinceit provides
a combinationof untypedfunctionalprogrammingandim-
peratize objectorientedprogramming Hence the mapping
oftenresultedin code“blow up”. Interestinglyenoughthe
abstiaction actvity wasthe easiest.Oncea pieceof code
wasunderstooddecidingwhatto keepandwhatto remove
wasoftenquiteclear

19

Of coursethenotionof translatioris only relevantin the
situationwheremodelcheckingis appliedto analreadyex-
isting programaswasthecasehere.Whenmodelchecking
is insteadappliedduring the early designphasesbeforea
programis written, modelingbecomesnuchmorelik e tra-
ditional programmingactivity.

The modeling effort took 2 peopleabout 6-8 weeks.
Theverificationeffort wasin contrastsmall,abouta week.
Oncethe modelwasformulated,it was easyto formulate
the propertiego beverified, eitherin termsof assertionsr
in termsof LTL formulae. The modelchecler foundthe 5
errorsright awvay.

6.2 LanguageConsiderations

PROMELA waschoserasthe modelinglanguagedueto
its supportof dynamicproces<reation.RA tasksarecre-
ated and deleteddynamically over time, and we initially
consideredhis asbeingimportant.As it turnsouthowever,
our verificationsonly involve a staticnumberof processes.

The PROMELA languageseenas a notationrepresents
very muchthe stateof theartin modelcheckinglanguages,
andis acceptabldor the problem. However, a few highly
recommendedmprovementdor the languagecameout as
aresultof our efforts,asdocumentedn [4]. Someof these
recommendationbave beenadoptedin the latestversion
of SPIN, inspiredby our work during several email com-
municationswvith GerardHolzmann.Firstof all, thelack of
procedurabbstractiorwasfelt asa cleardravback.Macros
could be used,but they don't very well supportlocal vari-
ablesnor parametetype checking(not to mentiontyping
“\" atthe endof eachmacrodefinitionline). Furthermore,
the SPIN tool setdoesnot supportmacrosvery well, since
the type checler as well asthe simulatorcannotrefer to
lines within macros. This meansthat when for example
simulatingtheresultof averification,onecannotreally fol-
low what goeson, and one hasto examineinsteadthe er
ror tracein anadhocway (loadingit into emacdor exam-
ple). The advantageof macrosis thatthereis no overhead
in usingthem: macrocalls aresimply expandedut before
themodelchecleris applied. Theseobsenationslead Ger
ard Holzmannto incorporatethe “inline” proceduresnto
PROMELA asannouncedn the SPIN newsletter22 (April
1998). Also nestecatomicconstructsvereregardeduseful,
andconsequentlyncorporatednto PROMELA. Still onthe
wish list arelocal variables,enumeratedypes,type equa-
tionsandconstantlefinitions.Generallya completeavoid-
anceof macrodefinitionswould bepreferable.

In [7] it is describechow procedureganbe modeledn
termsof processethatare spavned,andwhich communi-
catetheir resultbackon a channel. Thatis, a procedurds
modeledasaprocessandeachtimetheproceduras called,

sucha processs spavned. We tried this solution, but it
turnedout to causetwo problems. First of all, SPIN had
a limit on the numberof processesllowed to be created,
andthislimit (256) wasquickly reachedn a programusing
a lot of proceduralabstraction. The problemwas, that in
SPIN processewerenotkilled whenthey terminated.Due
to anemail corversationwith GerardHolzmann,SPIN was
changedsuchthatprocessewverekilled andremovedfrom
the memoryupontermination. However, this did not re-
move the secondoroblem thatmodelingprocedurecallsas
processpavningis expensve,andslows down verification
considerably Whenwe went over to using macros,veri-
ficationsterminatedan orderof magnitudefaster A third
solutionis to modeleachprocedureby a processwhichis
spavnedonly once,andwhereeachprocedurecall thenis
modeledsolelyby acommunicationio thatprocessHence,
thereis only one(1) spavning for eachprocedureleclama-
tion, in contrasto eachprocedurecall assuggestedh [7].
We have notexperimentedvith this solution.

6.3 Tool Considerations

Even though manualtranslationwas regardedharder
thanmanualabstractionwe believe thattranslationcanbe
mostlyfully automatedatleastfor traditionalprogramming
languagesuchas JavA (in contrastto L1sP) whereasab-
stractionrequiressomehumanguidedinteractie tool sup-
port. Hence theabore experiencesuggesthatthetransla-
tion activity shouldbe automatechismuchaspossibleper
hapsa model checler could even be “hardwired” for the
programmindanguagédtherebyavoiding theindirecttrans-
lation into a modelcheckindanguage).Abstraction,how-
ever, is notlikely to be easilyautomatedandwe therefore
suggestn interactve tool, an abstiaction—workbenig, for
supportingsuchabstractions With sucha tool, onecould
for exampleannotatea completeprogramwith abstraction
information suchas: Puttinga maximalboundon number
of iterationsin a loop, Limiting an infinite (or big) typeto a
finite (and small) subtype Changingthetypeof a variable
and changingall relatedoperations or Omitting replac-
ing, addingcode Also moreautomatectapabilitiescould
be considereduchasfor exampleprogramslicing.

We imaginethatthetool will allow theuserto make ar-
bitrary (soundaswell asunsoundmodificationgo his pro-
gram, and not just soundmodificationsthat are “correct”
in somesense.ln otherwords, it is importantto note, that
we have not provedtheabstractedPROMELA programto be
“correct” wrt. to the Lisp program. Thatis, we have not
shavn thatif a propertyholdsin the PROMELA program
it alsoholdsin the Li1sp program.Suchabstractiomproofs
are of courseof big interest,and computeraidedsupport
for suchcorrectabstractiongs obviously desirable.Some

20

abstractionsanbedonefully automaticallysuchasfor ex-
ampleprogramslicing. More sophisticatechpproacheso
abstractiorhave beenattemptedasedn theorenproving,
wherea theoremprover is usedto formulateabstractions
andprovethemcorrect,seefor example[5] [6]. Somework
tries to automatethesemore sophisticatedbstractiongl]
[2] [3]. The Pvs interactive theoremprover [8] hasa gen-
eralhigherorderlogic, allowing specificatiorandverifica-
tion of generalnfinite statetransitionsystemsParticularly
interestings thecurrenteffort to effectively integratemodel
checkinginto Pvs (asdescribedn [8]).

In generalsuchproofsare,however, very hardto create,
andwe believe, thatjust the abore mentionedabstraction—
workbenchcould be extremelyuseful, althoughsimplerin
purpose.Interestinglyenoughthis simplerapproachs not
evenyet stateof the art. We believe thata decentpurpose
of applyingmodelcheckingis to find errorsratherthanto
provecorrectnessndfor this purposesuchasimplertoolis
useful. Suchatool shouldin additionsupporistrongversion
control,sincesuchannotationsnay be changedjuite often
in the early phase®f theverificationactiity.

6.4 ClosingRemarks

We regardthe exerciseashighly successfuin the sense
thatwe foundfive errorsquite easily oncethe modelwas
constructed.The errorswereall classicalconcurrenyg re-
latederrors,whereunforeseerinter-leavings betweerpro-
cessesausedindesiredventsto happenAccordingto the
RA programmingeam,the effort hashada majorimpact,
locating errorsthat would probablynot have beenlocated
otherwise andidentifying a majordesignflaw.

Themajoreffort consistedn building the model,but we
claimthatthis activity canbe mademuchmoreefficient by
providing translationand abstractiontools. Furthermore,
the betterthe modelinglanguagethe easierthe modeling.
Especiallyif one considersusing a model checler in the
early stagesf systemsdesign,beforeprogrammings be-
gun, a nice notationis absolutelya must Theseconsider
ationshave definedthe researchagendawithin the Auto-
MATED SOFTWARE ENGINEERING groupat NASA Ames.
We believe that verification techniquesshouldbe applied
to the languagesn use,andhenceour currentefforts have
beendirectedtowardsJava andUmML. As amorelongterm
goalwe have interestin applyingverificationtechniquego
higherlevel languagesswell.

References

[1] S.Bensalem,Y. Lakhnech,and S. Owre. ComputingAb-
stractionsof Infinite StateSystem3CompositionallyandAu-
tomatically In ComputerAided\Verification,CA/'98, number

(2]

(3]

(4]

(5]

(6]

(7]
(8]

&)

1427in LectureNotesin ComputerSciencepages319-331.
SpringefVerlag,1998.

S.Bensalemy. LakhnechandS. Owre. InVeSt: A Tool for

theVerificationof Invariants.In ComputetAidedVerification,

CAV’98, numberl427in LectureNotesin ComputeiScience,
pagess05-510SpringefVerlag,1998.

S. GrafandH. Saidi. Constructiornof AbstractStateGraphs
with PVS. In ComputerAidedVerification, CA/’97, Lecture
Notesin ComputerScience SpringerVerlag,1997.

K. Havelund,M. Lowry, andJ. Penix. Formal Analysisof a

SpaceCraft Controllerusing SPIN. Technicalreport, NASA

AmesResearclCenter California, 1997.

K. HavelundandN. Shankar Experimentsn TheoremProv-

ing andModel Checkingfor ProtocolVerification. In M.-C.

GaudelandJ. Woodcock editors,FME’96: Industrial Bene-
fit and Advancesn Formal Methodsvolume1051of Lectue

Notesin ComputelSciencepage$62—-681Springe+\Verlag,

1996.

K. Havelund and N. Shankar A MechanizedRefinement
Prooffor a GarbageCollector Formal Aspectsof Comput-
ing, 1998. Submittedfor review.

G. Holzmann. The Designand Validation of ComputerPro-

tocols PrenticeHall, 1991.

S. Owre, S. Rajan,J. Rushby N. Shankarand M. Srivas.

PVS: CombiningSpecification Proof Checking,and Model

Checking.In R. Alur andT. A. Henzingereditors,Computer

Aided \erification, CAVY '96, number1102in LectureNotes
in ComputerScience pages411-414 New Brunswick, NJ,

July/Augustl996.Springer\Verlag.

B. Pell,E. Gat,R. KeesingN. MuscettolagndB. Smith.Plan

Executionfor AutonomousSpacecraftdn Proceeding®fthe

1997InternationalJoint Confeenceon Atrtificial Intelligence

1997.

21

